Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21671, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38066059

RESUMO

Lung cancer, a life-threatening disease primarily affecting lung tissue, remains a significant contributor to mortality in both developed and developing nations. Accurate biomarker identification is imperative for effective cancer diagnosis and therapeutic strategies. This study introduces the Voting-Based Enhanced Binary Ebola Optimization Search Algorithm (VBEOSA), an innovative ensemble-based approach combining binary optimization and the Ebola optimization search algorithm. VBEOSA harnesses the collective power of the state-of-the-art classification models through soft voting. Moreover, our research applies VBEOSA to an extensive lung cancer gene expression dataset obtained from TCGA, following essential preprocessing steps including outlier detection and removal, data normalization, and filtration. VBEOSA aids in feature selection, leading to the discovery of key hub genes closely associated with lung cancer, validated through comprehensive protein-protein interaction analysis. Notably, our investigation reveals ten significant hub genes-ADRB2, ACTB, ARRB2, GNGT2, ADRB1, ACTG1, ACACA, ATP5A1, ADCY9, and ADRA1B-each demonstrating substantial involvement in the domain of lung cancer. Furthermore, our pathway analysis sheds light on the prominence of strategic pathways such as salivary secretion and the calcium signaling pathway, providing invaluable insights into the intricate molecular mechanisms underpinning lung cancer. We also utilize the weighted gene co-expression network analysis (WGCNA) method to identify gene modules exhibiting strong correlations with clinical attributes associated with lung cancer. Our findings underscore the efficacy of VBEOSA in feature selection and offer profound insights into the multifaceted molecular landscape of lung cancer. Finally, we are confident that this research has the potential to improve diagnostic capabilities and further enrich our understanding of the disease, thus setting the stage for future advancements in the clinical management of lung cancer. The VBEOSA source codes is publicly available at https://github.com/TEHNAN/VBEOSA-A-Novel-Feature-Selection-Algorithm-for-Identifying-hub-Genes-in-Lung-Cancer .


Assuntos
Doença pelo Vírus Ebola , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Algoritmos , Software , Sinalização do Cálcio , Redes Reguladoras de Genes
2.
Sci Rep ; 13(1): 14644, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670037

RESUMO

Breast cancer is considered one of the significant health challenges and ranks among the most prevalent and dangerous cancer types affecting women globally. Early breast cancer detection and diagnosis are crucial for effective treatment and personalized therapy. Early detection and diagnosis can help patients and physicians discover new treatment options, provide a more suitable quality of life, and ensure increased survival rates. Breast cancer detection using gene expression involves many complexities, such as the issue of dimensionality and the complicatedness of the gene expression data. This paper proposes a bio-inspired CNN model for breast cancer detection using gene expression data downloaded from the cancer genome atlas (TCGA). The data contains 1208 clinical samples of 19,948 genes with 113 normal and 1095 cancerous samples. In the proposed model, Array-Array Intensity Correlation (AAIC) is used at the pre-processing stage for outlier removal, followed by a normalization process to avoid biases in the expression measures. Filtration is used for gene reduction using a threshold value of 0.25. Thereafter the pre-processed gene expression dataset was converted into images which were later converted to grayscale to meet the requirements of the model. The model also uses a hybrid model of CNN architecture with a metaheuristic algorithm, namely the Ebola Optimization Search Algorithm (EOSA), to enhance the detection of breast cancer. The traditional CNN and five hybrid algorithms were compared with the classification result of the proposed model. The competing hybrid algorithms include the Whale Optimization Algorithm (WOA-CNN), the Genetic Algorithm (GA-CNN), the Satin Bowerbird Optimization (SBO-CNN), the Life Choice-Based Optimization (LCBO-CNN), and the Multi-Verse Optimizer (MVO-CNN). The results show that the proposed model determined the classes with high-performance measurements with an accuracy of 98.3%, a precision of 99%, a recall of 99%, an f1-score of 99%, a kappa of 90.3%, a specificity of 92.8%, and a sensitivity of 98.9% for the cancerous class. The results suggest that the proposed method has the potential to be a reliable and precise approach to breast cancer detection, which is crucial for early diagnosis and personalized therapy.


Assuntos
Neoplasias , Qualidade de Vida , Feminino , Animais , RNA-Seq , Redes Neurais de Computação , Algoritmos , Cetáceos , Expressão Gênica
3.
PLoS One ; 18(8): e0285796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37590282

RESUMO

Recently, research has shown an increased spread of non-communicable diseases such as cancer. Lung cancer diagnosis and detection has become one of the biggest obstacles in recent years. Early lung cancer diagnosis and detection would reliably promote safety and the survival of many lives globally. The precise classification of lung cancer using medical images will help physicians select suitable therapy to reduce cancer mortality. Much work has been carried out in lung cancer detection using CNN. However, lung cancer prediction still becomes difficult due to the multifaceted designs in the CT scan. Moreover, CNN models have challenges that affect their performance, including choosing the optimal architecture, selecting suitable model parameters, and picking the best values for weights and biases. To address the problem of selecting optimal weight and bias combination required for classification of lung cancer in CT images, this study proposes a hybrid metaheuristic and CNN algorithm. We first designed a CNN architecture and then computed the solution vector of the model. The resulting solution vector was passed to the Ebola optimization search algorithm (EOSA) to select the best combination of weights and bias to train the CNN model to handle the classification problem. After thoroughly training the EOSA-CNN hybrid model, we obtained the optimal configuration, which yielded good performance. Experimentation with the publicly accessible Iraq-Oncology Teaching Hospital / National Center for Cancer Diseases (IQ-OTH/NCCD) lung cancer dataset showed that the EOSA metaheuristic algorithm yielded a classification accuracy of 0.9321. Similarly, the performance comparisons of EOSA-CNN with other methods, namely, GA-CNN, LCBO-CNN, MVO-CNN, SBO-CNN, WOA-CNN, and the classical CNN, were also computed and presented. The result showed that EOSA-CNN achieved a specificity of 0.7941, 0.97951, 0.9328, and sensitivity of 0.9038, 0.13333, and 0.9071 for normal, benign, and malignant cases, respectively. This confirms that the hybrid algorithm provides a good solution for the classification of lung cancer.


Assuntos
Aprendizado Profundo , Doença pelo Vírus Ebola , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Algoritmos , Hospitais de Ensino , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...